What Is Fiberglass Reinforced Plastic?

At an age where conventional glass and plastic may soon be a thing of the past, attention has been shifted to the use of fibre glass reinforced plastic (FRP) or sometimes known as glass reinforced plastic. Basically FRP is a fiber reinforced polymer made from a plastic matrix which is reinforced by fine glass fibers. The plastic matrix can be either epoxy (a thermosetting plastic) or thermoplastic. FRP is very light and an extremely strong robust material and its capabilities have often been compared to those of carbon fiber. Although it is somewhat less stiff compared to carbon fiber, it is also far less brittle and the raw materials are considerably cheaper. FRP is more favored compared to conventional metal primarily due to its weight and bulk strength, and also its shape shifting capabilities during the moulding process. FRP is widely used to construct the main framework for boats, tanks, vessels, pipes and also ducts pz27 sheet pile.

FRP grating is produced using a combination of fibre glass reinforcements and other thermosetting resins. This composite material has been touted as a material for the future, replacing conventional materials such as alloys and metals. FRP grating does not corrode like conventional steel gratings and thus are a perfect candidate for corrosive environments. This is what makes FRP grating stand out amongst other composite materials. FRP grating also possesses a high strength to weight ratio and therefore they are generally resistant to impacts. Besides that, they have a long service life span and require little or no maintenance.

Due to its resistance against corrosion, FRP has been used to construct vessels and tanks to house reactive and corrosive chemicals. Like any other compound, FRP also undergoes an oxidation process, where the surface becomes dull and the color fades. FRP scrubbers are generally used to scrub fluids off the surface to prevent oxidation. In air pollution control technology, there are generally 3 main types of FRP scrubbers. Dry media scrubbers involve a dry, solid media suspended in the middle of the tank to control the concentration of a pollutant in the incoming gas via absorption and adsorption. Wet media scrubbers douse the polluted fluids with a scrubbing concentrate. Due to more contact with the content, these vessels must be designed with more stringent criteria. Biological scrubbers are structurally similar to wet media scrubbers. This media is designed to encourage bacteria growth by spraying the vessel through with water filled with nutrients to encourage bacteria to grow. With biological scrubbers, it is actually the bacteria which scrub the pollutants. One general limitation of FRP vessels and scrubbers would be its temperature limits. FRP is not designed to withstand high temperatures and the limit depends on the resin used to manufacture the composite.

Leave a Reply

Your email address will not be published. Required fields are marked *